

experimental assessment and first ophthalmic applications

Fabrice Harms fharms@imagine-eyes.com

Adaptive optics ... into clinics ?

• many optical setups are now able to image the retina or manipulate aberrations using AO

 dynamic range of correction devices is sometimes a limitation to these AO applications on an extensive range of patients, limiting the potential clinical studies

Development of a deformable mirror with characteristics consistent with ophthalmic clinical requirements

Aberration correction

- Closed-loop correction 8 Hz
- 6 iterations
- Myopic eye, irregular cornea
- Pupil diameter
 6.6 mm

Aberration correction

Adaptive Optics Visual Simulator

Irx3 aberrometer

Mirao52d deformable mirror

OLED microdisplay

- AO visual simulator = AO phoropter
- = an ophthalmic instrument able to:

•Manipulate and control ocular wavefront aberrations

•Subjectively assess visual performance in the presence of user-defined aberration

Crx1 AO Visual Simulator

Adaptive Optics Visual Simulator

Comparison between best sphero-cyl and full AO correction

Courtesy K. Rocha

Flood illumination retinal imaging

UHR Spectral Domain OCT

Courtesy E.J. Fernandez, W. Drexler

UHR Spectral Domain OCT

Courtesy W. Drexler, E.J. Fernandez

Mirao 52d: electromagnetic deformable mirror

- 52 actuators
- Effective diameter 15 mm
- Overall size 66 x 66 mm
- Voltage range -1 V to +1V

Membrane reflectivity

Experimental setup

Hartmann-Shack wavefront sensor HASO32

Deformable mirror mirao52d

Single actuator surface response

Linearity

Hysteresis

Single actuator response in 8 up-down cycles (open loop)

Temporal characteristics

Wavefront changes over time Open loop, open setup, standard room conditions (A.C.)

Zernike mode generation / correction

Wavefront range (PV)

Zernike mode generation / correction

Precision:

- Difference between expected and measured Zernike coefficients
- Expected Zernike coefficient: 1 µm RMS

- Magnetic deformable mirror:
 - > high stroke (max. 50 µm)
 - generates / compensates large wavefront aberrations
 - tilt capability
 - Inear (predictable behaviour)
 - safety (low voltage)
- Suitable for many ophthalmic applications:

 ability to create / compensate both low and high-order aberrations (ex. keratoconus)
 good candidate for integration on clinical systems

Thanks !

- Universidad de Murcia
 - E. J. Fernandez
- Cardiff University
 - B. Hermann, A. Unterhuber, B. Pova_ay, W. Drexler
- CNRS LESIA Observatoire de Paris
 - M. Glanc
- MaunaKea Technologies
 - F. Lacombe
- Imagine Eyes
 - N. Chateau, L.Vabre, X. Levecq, F. Martins

Mode coupling

F. Lacombe, LESIA Observatoire de Paris, 2004

